Loading...

Sequences of functions Support

Sequences of functions

Pointwise convergence

Let $S\subseteq \R.$ For every $n \in \N,$ let $f_n \colon S \to \R$ be a function. The sequence $\{ f_n \}_{n=1}^\infty$ converges pointwise to $f \colon D\subseteq\R \to \R$ if for every $x \in D,$ then \begin{equation*} f(x) = \lim_{n\to\infty} f_n(x) . \end{equation*}

Limits of sequences of numbers are unique. That is, if a sequence $\{ f_n \}_{n=1}^\infty$ converges pointwise, the limit function $f$ is unique. We also say that $f_n \colon D \to \R$ converges pointwise to $f$ on $E \subset D$ for some $f \colon E \to \R.$ In this context we mean that $f(x) = \ds \lim_{n\to\infty} f_n(x)$ for every $x \in E.$ In other words, the restrictions of $f_n$ to $E$ converge pointwise to $f.$

The sequence of functions defined on $[-1,1]$ by $f_n(x) \coloneqq x^{2n}$ converges pointwise to $f \colon [-1,1] \to \R,$ where
\begin{equation*} f(x) = \begin{cases} 1 & \text{if } x=-1 \text{ or } x=1, \\ 0 & \text{otherwise.} \end{cases} \end{equation*}

Below, you can find a visual represenation of this sequence of functions. Drag the slider below to explore the sequence for different values of $n.$

The sequence of functions defined on $[-1,1]$ by $f_n(x) \coloneqq x^{2n}.$
To prove that the sequence converges, consider $x \in (-1,1).$ Then $0 \leq x^2 \lt 1.$ This implies that
\begin{equation*} \abs{x^{2n} - 0} = {(x^2)}^n \to 0 \quad \text{as} \quad n \to \infty . \end{equation*}
Hence, $\ds \lim_{n\to\infty}f_n(x) = 0.$ Now for $x = 1$ or $x=-1,$ then we have that $x^{2n} = 1$ for all $n$ and therefore $\ds \lim_{n\to\infty}f_n(x) = 1.$ Finally, for $x\in \R\setminus[-1,1],$ the sequence $\bigl\{ f_n(x) \bigr\}_{n=1}^\infty$ does not converge.
Let $f_n:S\subseteq\R \to \R$ defined by $f_n(x) \coloneqq \sin(nx).$ Is this sequence pointwise convergent? If so, over which interval $I$ does it converge pointwise?

In the applet below you can appreciate the behaviour of $f_n$ defined on $\R$ for different value of $n.$

The sequence of functions defined on $\R$ by $f_n(x) \coloneqq \sin(nx).$

In this case $f_n$ does not converge pointwise to any function on any interval. However, it may converge at certain points, such as when $x=0$ or $x=\pi.$ Try to prove as an exercise that in any interval $[a,b],$ there exists an $x$ such that $\sin(xn)$ does not have a limit as $n$ goes to infinity.

We can state pointwise convergence in a different way. It is a simple application of the definition of convergence of a sequence of real numbers.

Let $f_n \colon D \to \R$ and $f \colon D \to \R$ be functions. Then $\{ f_n \}_{n=1}^\infty$ converges pointwise to $f$ if and only if for every $x \in D,$ and every $\epsilon > 0,$ there exists an $N \in \N$ such that for all $n \geq N,$ we have
\begin{equation*} \abs{f_n(x)-f(x)} \lt \epsilon . \end{equation*}
Proof

Coming soon! :)

Let $f_n \colon D \to \R$ and $f \colon D \to \R$ be functions. The sequence $\{ f_n \}_{n=1}^\infty$ converges uniformly to $f$ if for every $\epsilon > 0,$ there exists an $N \in \N$ such that for all $n \geq N,$ we have
\begin{equation*} \abs{f_n(x) - f(x)} \lt \epsilon \quad \text{for all } \quad x \in D. \end{equation*}
Uniform convergence.

Let $\{ f_n \}_{n=1}^\infty$ be a sequence of functions $f_n \colon D \to \R.$ If $\{ f_n \}_{n=1}^\infty$ converges uniformly to $f \colon S \to \R,$ then $\{ f_n \}_{n=1}^\infty$ converges pointwise to $f.$

The converse does not hold. For instance, the functions $f_n(x) \coloneqq x^{2n}$ do not converge uniformly on $[-1,1],$ even though they converge pointwise. We can prove this by contradiction. That is, assume that the convergence is uniform. Let's choose $\epsilon \coloneqq \dfrac{1}{2}.$ Then there exists an $N\in\N$ such that

$$x^{2N} = \abs{x^{2N} - 0} \lt \frac{1}{2}\quad \text{for all}\quad x \in (-1,1),$$

since $f_n(x)$ converges to 0 on $(-1,1).$ This means that for every sequence $\{ x_k \}_{k=1}^\infty$ in $(-1,1)$ such that $\ds \lim_{k\to\infty} x_k=1,$ we have $x_k^{2N} \lt \dfrac{1}{2}$ for all $k.$ On the other hand, notice that $x^{2N}$ is a continuous function of $x$ (it is a polynomial). Therefore, we obtain

\begin{equation*} 1=1^{2N}=\lim_{k\to\infty} x_k^{2N} \leq \frac{1}{2} , \end{equation*}

which is a contradiction.

However, if we restrict our domain to $[-a,a]$ where $0 \lt a \lt 1,$ then $\{ f_n \}_{n=1}^\infty$ converges uniformly to 0 on $[-a,a].$ Also note that $a^{2n} \to 0$ as $n \to \infty.$ For every $\epsilon > 0,$ pick $N \in \N$ such that $a^{2n} \lt \epsilon$ for all $n \geq N.$ When $x \in [-a,a],$ we have $\abs{x} \leq a.$ Thus for all $n \geq N$ and all $x \in [-a,a],$ \begin{equation*} \abs{x^{2n}} = \abs{x}^{2n} \leq a^{2n} \lt \epsilon . \end{equation*}

Let $f_n(x) := \dfrac{x}{n}$ defined on $\R$ for every $n\in \N.$ Observe that $\{f_n\}$ converges to $f=0,$ since
\begin{equation*} \lim f_n(x) = \lim \frac{x}{n} = x\lim\frac{1}{n}=0 \;\text{ for all }\,x\in \R. \end{equation*}
If we let $n_k:=k$ and $x_k := k .$ Then $f_{n_k}(x_k)=1$ so that \begin{equation*} \abs{\,f_{n_k}(x_k)-f(x_k)}= \abs{1-0}=1. \end{equation*} Therefore the sequence $\{f_n\}$ does not converges uniformly to $f.$
Let $f_n \colon S \to \R$ and $f \colon S \to \R$ be functions. The sequence $\{ f_n \}$ does not converge uniformly to $f$ if and only if for some $\epsilon_0\gt 0$ there is a subsequence $\{ f_{n_k} \}$ of $\{ f_n \}$ and a sequence $\{ x_k \}$ in $S$ such that \begin{equation*} \abs{\,f_{n_k}\left(x_k\right)-f(x_k)}\geq \epsilon_0\; \text{ for all } \;k\in \N. \end{equation*}
Proof

Coming soon! :)

$\log 😅 =💧\log 😄$